74 research outputs found

    Laminin and fibronectin in retinoid-induced keratolenticular dysgenesis.

    Get PDF
    Acute embryonic exposure to isotretinoin during gastrulation (gestational day 7) in the mouse results in delay or failure of separation of the lens vesicle from the surface ectoderm. During normal lens vesicle detachment, laminin is localized within the lens, keratolenticular stalk and adjacent surface ectoderm. The mesenchyme surrounding the stalk stains positively for fibronectin. In contrast, isotretinoin-exposed embryos at the same stage of gestation exhibit reduced staining for both extracellular matrix components. Persistent keratolenticular attachment observed later in gestation in the exposed embryos is associated with increased production of laminin by the keratolenticular stalk and anterior lens epithelium. A delay in the sequence of production of extracellular matrix may be causally associated with persistence of the keratolenticular stalk

    Sequential Scanning Electron Microscopic Analyses of Normal and Spontaneously Occurring Abnormal Ocular Development in C57B1/6J Mice

    Get PDF
    Embryos of C57B1/6J mice were examined grossly, and by light and scanning electron microscopy on days 8 through 19 of gestation. Adult eyes were examined by slit lamp biomicroscopy and light microscopy. A spontaneous incidence of eye malformations including microphthalmia, microphakia, corneal opacity and anterior segment dysgenesis was observed at a rate of 13.2% in the adults and 10.8% in the day 14 embryos. Scanning electron microscopy demonstrates the complex series of coordinated changes in shape and tissue interrelationships observed in normal ocular development. Possible routes of abnormal ocular morphogenesis beginning as early as the time of optic vesicle formation are discussed

    Parameters of Growth in the Embryonic and Neonatal Chick Basilar Papilla

    Get PDF
    The growth of the basilar papilla in the chick cochlear duct was studied utilizing light, scanning, and transmission electron microscopy. The ages of the cochleae investigated ranged from embryonic day 6 to post-hatching day 7. The changes in the length and width of the basilar papilla as well as the establishment of its spatula-like shape were correlated with the maturation of the hair cells\u27 apical surfaces and the changes in the cellular organization of the sensory epithelium. The histological reorganization of the distal hair cell nuclei was concomitant with the broadening of the distal region of the basilar papilla and occurred at a later stage than the reorganization of the proximal hair cell nuclei. Since the stereociliary bundles on all the hair cells are differentiated quite early, it appears that the delayed reorganization of the distal nuclei is associated with anatomical constraints on the cochlear duct, rather than a later differentiation of the distal sensory epithelium. A clear understanding of how growth of the cochlear duct influences both the distribution of hair cells on the basilar papilla\u27s surface and the cellular organization in the sensory epithelium is critical to future studies correlating ultrastructural development with functional maturation of the auditory system

    The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos

    Get PDF
    Reactive oxygen species (ROS) play an important role in ethanol-induced apoptosis and teratogenesis. However, the major sources of ROS in ethanol-exposed embryos have remained undefined. This study was conducted to determine the role of NADPH oxidase (NOX) in ethanol-induced oxidative stress and apoptosis in mouse embryos. Analyses of mRNA expression indicated that ethanol treatment resulted in a significant increase in mRNA expression of NOX catalytic subunit Duox-1 in gestational day 9 (GD 9:0) mouse embryos. Ethanol exposure also resulted in significant increases in mRNA expression of NOX regulatory subunits, p22phox, p67phox, NOXA1 and NOXO1. In addition, a significant increase in NOX enzyme activity was found in the ethanol-exposed embryos as compared to controls. Co-treatment with the NOX inhibitor, diphenyleneiodonium (DPI), significantly prevented ethanol-induced increases in NOX enzyme activity, ROS generation and oxidative DNA damage in ethanol-exposed embryos. DPI treatment also resulted in a reduction in caspase-3 activation, decreased caspase-3 activity and diminished prevalence of apoptosis in ethanol-exposed embryos. These results support the hypothesis that NOX is a critical source of ROS in ethanol-exposed embryos and that it plays an important role in ethanol-induced oxidative stress and pathogenesis

    Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells

    Get PDF
    Previous studies have shown that ethanol exposure causes apoptosis in cranial neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Additionally, induction of endogenous antioxidants through activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) has been shown to prevent oxidative stress and apoptosis in ethanol-exposed mouse embryos. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect NCCs against ethanol-induced apoptosis. Ethanol exposure was shown to cause a moderate increase in the protein expression of Nrf2 and its downstream antioxidants in the NCCs. Treatment of NCCs with tBHQ alone significantly increased the protein expression of Nrf2 and its downstream antioxidants and also significantly increased the activities of the antioxidant enzymes. In NCCs exposed to ethanol, the tBHQ-mediated antioxidant response prevented oxidative stress and apoptosis. These results clearly demonstrate that activation of Nrf2 signaling confers protection against ethanol-induced apoptosis in NCCs

    Dose-dependent teratogenicity of the synthetic cannabinoid CP-55,940 in mice

    Get PDF
    Potent synthetic cannabinoids (SCBs) are illegally distributed drugs of abuse that are frequently consumed in spite of their adverse consequences. This study was designed to determine if the toxicity observed in adults also extends to the prenatal period by examining the developmental toxicity/teratogenicity of one of these SCBs, CP-55,940, in a mammalian model. First, immunohistochemistry was employed for cannabinoid receptor 1 (CB1) localization within gestational day (GD) 8 mouse embryos; this receptor was identified in the cranial neural plate, suggesting that the endogenous cannabinoid system may be involved in normal development. Based on this information and on previous avian teratogenicity studies, the current investigation focused on cannabinoid exposure during neurulation. The treatment paradigm involved acute i.p. administration of vehicle, 0.0625, 0.125, 0.25, 0.5, 1.0, or 2.0 mg/kg CP-55,940 to time-mated C57Bl/6J mice on their 8th day of pregnancy (n > 10 litters per treatment group). On GD 17, litters were harvested and examined for numbers of live, dead, or resorbed fetuses, as well as for fetal weight, length, and gross morphological abnormalities. No effect on litter size, fetal weight, or crown rump length was seen at any of the CP-55,940 dosages tested. Major malformations involving the craniofacies and/or eyes were noted in all drug-treated groups. Selected fetuses with craniofacial malformations were histologically sectioned and stained, allowing investigation of brain anomalies. Observed craniofacial, ocular, and brain abnormalities in drug-treated fetuses included lateral and median facial clefts, cleft palate, microphthalmia, iridial coloboma, anophthalmia, exencephaly, holoprosencephaly, and cortical dysplasia. With the most commonly observed defects involving the eyes, the incidence and severity of readily identifiable ocular malformations were utilized as a basis for dose–response analyses. Ocular malformation ratings revealed dose-dependent CP-55,940 teratogenicity within the full range of dosages tested. While examination of additional critical periods and in depth mechanistic studies is warranted, the results of this investigation clearly show the dose-dependent teratogenicity of this SCB

    Magnetic Resonance-Based Imaging in Animal Models of Fetal Alcohol Spectrum Disorder

    Get PDF
    Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work

    The Teratogenic Effects of Prenatal Ethanol Exposure Are Exacerbated by Sonic Hedgehog or Gli2 Haploinsufficiency in the Mouse

    Get PDF
    Disruption of the Hedgehog signaling pathway has been implicated as an important molecular mechanism in the pathogenesis of fetal alcohol syndrome. In severe cases, the abnormalities of the face and brain that result from prenatal ethanol exposure fall within the spectrum of holoprosencephaly. Single allele mutations in the Hh pathway genes Sonic Hedgehog (SHH) and GLI2 cause holoprosencephaly with extremely variable phenotypic penetrance in humans. Here, we tested whether mutations in these genes alter the frequency or severity of ethanol-induced dysmorphology in a mouse model. Timed pregnancies were established by mating Shh+/βˆ’ or Gli2+/βˆ’ male mice backcrossed to C57BL/6J strain, with wildtype females. On gestational day 7, dams were treated with two ip doses of 2.9 g/kg ethanol (or vehicle alone), administered four hrs apart. Fetuses were then genotyped and imaged, and the severity of facial dysmorphology was assessed. Following ethanol exposure, mean dysmorphology scores were increased by 3.2- and 6.6-fold in Shh+/βˆ’ and Gli2+/βˆ’ groups, respectively, relative to their wildtype littermates. Importantly, a cohort of heterozygous fetuses exhibited phenotypes not typically produced in this model but associated with severe holoprosencephaly, including exencephaly, median cleft lip, otocephaly, and proboscis. As expected, a correlation between the severity of facial dysmorphology and medial forebrain deficiency was observed in affected animals. While Shh+/βˆ’ and Gli2+/βˆ’ mice have been described as phenotypically normal, these results illustrate a functional haploinsufficiency of both genes in combination with ethanol exposure. By demonstrating an interaction between specific genetic and environmental risk factors, this study provides important insights into the multifactorial etiology and complex pathogenesis of fetal alcohol syndrome and holoprosencephaly

    Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse

    Get PDF
    In the mouse and chick embryo, the node plays a central role in generating left-right (LR) positional information. Using several different strategies, we provide evidence in the mouse that bone morphogenetic protein 4 (Bmp4) is required independently in two different sites for node morphogenesis and for LR patterning. Bmp4 expression in the trophoblast-derived extra-embryonic ectoderm is essential for the normal formation of the node and primitive streak. However, tetraploid chimera analysis demonstrates that Bmp4 made in epiblast-derived tissues is required for robust LR patterning, even when normal node morphology is restored. In the absence of embryonic Bmp4, the expression of left-side determinants such as Nodal and Lefty2 is absent in the left lateral plate mesoderm (LPM). Noggin-mediated inhibition of Bmp activity in cultured wild-type embryos results in suppression of Nodal expression in the LPM. Thus, unlike previous models proposed in the chick embryo in which Bmp4 suppresses left-sided gene expression, our results suggest that Bmp acts as a positive facilitator of the left-sided molecular cascade and is required for Nodal induction and maintenance in the left LPM

    Reduction of ethanol-induced ocular abnormalities in mice through dietary administration of N-acetylcysteine

    Get PDF
    N-acetylcysteine (NAC) is a derivative of the amino acid L-cysteine that previously has been shown to protect against ethanol (EtOH)-induced apoptosis during early development. Ongoing research is demonstrating that NAC is also proving clinically beneficial in reducing oxidative stress-mediated lung, liver and kidney damage, with protection likely resulting from a NAC-mediated increase in glutathione levels. In the present study, the hypothesis that co-administration of NAC and EtOH via liquid diet on days 7 and 8 of pregnancy in mice would reduce EtOH's teratogenicity was tested. For this work, adult non-pregnant female mice were acclimated to a liquid diet containing EtOH for 16 days, withdrawn from the EtOH, bred and then returned to the liquid diet containing 4.8% EtOH and/or either 0.5 or 1 mg NAC/ml diet on their 7th and 8th days of pregnancy. At the concentrations employed, the mice received NAC dosages of approximately 300 or 600 mg/kg/day and achieved peak blood EtOH levels (BEC) that averaged approximately 200 mg/dl. There was no difference in BEC between the EtOH alone and EtOH plus 600 mg/kg NAC group. Following maternal euthanasia, gestational day (GD) 14 fetuses were removed, fixed, weighed and examined for the presence and severity of ocular abnormalities, a readily assessed endpoint that results from GD 7 and 8 EtOH exposures. While the lower dosage of NAC (300 mg/kg) resulted in a decrease in the incidence of ocular defects in both the left and right eyes, this reduction was not statistically significant. However, doubling the NAC concentration did yield a significant change; as compared to the group treated with EtOH alone, the incidence of ocular abnormalities was diminished by 22%. These results show the potential of an orally administered compound with proven clinical efficacy to reduce EtOH's teratogenic effects and support the premise that oxidative damage plays an important mechanistic role in Fetal Alcohol Spectrum Disorders
    • …
    corecore